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Abstract. Binomial N-mixture models have proven very useful in ecology, conservation,
and monitoring: they allow estimation and modeling of abundance separately from detection
probability using simple counts. Recently, doubts about parameter identifiability have been
voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found
virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-
mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The
corresponding multinomial N-mixture models had no problems. Parameter estimates under
Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifi-
ability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but
were unaffected by whether the models did or did not include covariates. Hence, binomial N-
mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In
contrast, NB mixtures were often unidentifiable, which is worrying since these were often
selected by Akaike’s information criterion. Identifiability of binomial N-mixture models
should always be checked. If problems are found, simpler models, integrated models that com-
bine different observation models or the use of external information via informative priors or
penalized likelihoods, may help.

Key words: binomial N-mixture model; estimability; hierarchical model; identifiability; infinite
abundance estimate; maximum likelihood; multinomial N-mixture model; nonidentifiable; unmarked
zero-inflation.

INTRODUCTION

Upon their development a little over a decade ago,
binomial N-mixture models (Royle 2004a) achieved what
before was believed impossible: to estimate abundance,
corrected for imperfect detection, with data from
unmarked individuals. Using only replicated counts and
assuming population closure, these models combine a
Poisson or similar distribution for spatial variation of
latent abundance (N) with a binomial distribution, con-
ditional on N, for the counts. Binomial N-mixture mod-
els (hereafter Binmix models) have since proven
extremely useful in ecology, conservation, and monitor-
ing. They can be applied to much “cheaper” (because
more easily obtainable) data and typically over much lar-
ger spatiotemporal extents than other protocols for
abundance estimation, which require extra information
that is more difficult to come by, e.g., individual

identification (capture–recapture; Williams et al. 2002)
or distance measurements (distance sampling; Buckland
et al. 2015).
Use of Binmix models has greatly increased over the

years and many model extensions have been developed
(K�ery and Royle 2016). These include different observa-
tion protocols such as removal sampling (Dorazio et al.
2005), distance sampling (Royle et al. 2004) and cap-
ture–recapture (Royle et al. 2007), which all lead to a
multinomial N-mixture model, where a multinomial
observation model is mixed over a Poisson or similar dis-
tribution. Other important developments have been
dynamic models (Dail and Madsen 2011, Hostetler and
Chandler 2015, Bellier et al. 2016), spatial models (Royle
et al. 2007), and models with zero-inflation (Wenger and
Freeman 2008) and correlated detections (Martin et al.
2011). Code for Bayesian analysis is widely available
(K�ery 2008, K�ery and Schaub 2012), and Binmix models
have been implemented in three of the most widely used
computer software for capture–recapture and occupancy
data; MARK (White and Burnham 1999), PRESENCE
(Hines 2012), and unmarked (Fiske and Chandler 2011),
where the user may choose between three abundance
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mixtures, Poisson (P), zero-inflated Poisson (ZIP) and
negative-binomial (NB), and use Akaike’s information
criterion (AIC) to guide that choice.
Recently, however, two issues with these models have

been found. First, doubts have been expressed about
parameter identifiability in the Binmix model. Its likeli-
hood contains an infinite sum over the latent abundance
states, which in practice is achieved by replacing infinity
by some large number K beyond which parameter esti-
mates do not change appreciably (Royle 2004a). In
unmarked, K is chosen by default as the maximum count
plus 100, while PRESENCE sets K at 200 (J. Hines, per-
sonal communication). Dennis et al. (2015) show that the
Binmix model with Poisson mixture can sometimes yield
estimates of abundance and detection probability (p)
that are infinite and zero, respectively. They found this
especially for small abundance, detection probability
and number of repeat visits. No value of K then exists at
which estimates become stable; rather, as K increases so
does the abundance estimate. Hence, stability of the esti-
mates for increasing K can be used as a criterion for
parameter identifiability (Dennis et al. 2015, Haines
2016). Barker et al. (2017) show that parameter identifi-
ability in the P-Binmix model is tenuous and that in
some cases, the model may collapse to a simpler ran-
dom-effects Poisson model with a random site-specific
intercept, which is the product of the abundance and the
detection intercepts in the more general Binmix model.
They compare the Binmix model with a classical cap-
ture-recapture model fitted to a typical detection-history
matrix where there are no identifiability problems.
Modeling replicated counts in the Binmix model
amounts to fitting a model to an information-reduced
summary of the original detection history. Barker et al.
(2017) claim that the associated loss of information is
crucial and causes problems for parameter identifiability
in the Binmix model.
A second issue is the recurrent observation that NB

mixtures may lead to unrealistically high abundance esti-
mates, even though the NB may be strongly preferred by
AIC over P or ZIP mixtures (K�ery et al. 2005, Joseph
et al. 2009). This has been called the “good fit/bad pre-
diction dilemma” (K�ery and Royle 2016:264). No solu-
tion or even explanation for it has been discovered so
far. Given the theoretical and practical importance of
the Binmix model, both issues give cause for concern.
I conducted a large screening test of parameter identi-

fiability in the Binmix model with P, ZIP, and NB mix-
tures, using 137 bird data sets comprising territory
detection-history data from 2,037 sites. I fitted “realisti-
cally complex” Binmix models with multiple covariates
to the aggregated counts and compared the results to
those from analogous multinomial N-mixture models
(here called Multimix models) for the full detection-
history data (Royle 2004b, Dorazio et al. 2005). These
are hierarchical extensions of simple capture–recapture
models and as such their identifiability should not be
under question (Barker et al. 2017). For both models, I

varied K over a large range. I then repeated this for two
much smaller data subsets to identify potential identifia-
bility problems for more real-world sample sizes. I also
repeated all of this with models without covariates since
covariates are known to help or even permit identifiabil-
ity in similar models (Dorazio 2014, Matechou et al.
2014).
I use insensitivity to increasing K (series of K) as a cri-

terion for parameter identifiability (Dennis et al. 2015,
Haines 2016) and compare identifiability and abundance
estimates among the three mixtures (P, ZIP, and NB) for
both the Binmix and the Multimix models. Since estima-
bility in multimix models is not under question (Barker
et al. 2017), agreement of inferences between the two
model classes can be taken as another criterion for iden-
tifiability in the Binmix model. For P and NB mixtures
in the model without covariates, I also compare the ser-
ies of K criterion with the two identifiability diagnostics
developed by Dennis et al. (2015).

MATERIALS AND METHODS

A screening test with 137 data sets on Swiss breeding
birds

In the new Swiss breeding bird atlas (Knaus et al.
2018), 2,318 1-km2 quadrats laid out randomly across
the 41,285 km2 of Switzerland were surveyed by experi-
enced volunteers along a prescribed, irregular survey
transect route of typically 4–6 km length. Each transect
was surveyed two or three times during one breeding
season (15 April–30 June) in the years 2012–2016 using
the territory mapping method (Bibby et al. 2000), where
all bird detections are recorded on a map and territories
are then identified based on behavior, clustering of
detections and inter-detection distances. Use of territory
mapping yields the equivalent of capture–recapture data
for every identified territory (Royle et al. 2007, K�ery
and Royle 2010). I analyzed data from the 2,037 quad-
rats surveyed in 2012–2015, where a total of 167 species
were detected.
For each site, I first aggregated the territory-level

capture–recapture data by observable capture history,
e.g., 111 or 10 denote a territory detected during each of
three surveys or during the first and missed during the
second in a quadrat surveyed only twice. In the Swiss
atlas survey, there are seven and three observable detec-
tion histories in quadrats surveyed three and two times,
respectively: x = {111, 110, 101, 011, 100, 010, 001} and
x = {11, 10, 01}, where x denotes the vector of observ-
able capture histories. I fit Multimix models directly to
site-specific detection history frequencies yi,x, i.e., the
frequency of an encounter history of type x observed at
site i. The multinomial vector of frequencies of all possi-
ble encounter histories is the vector yi for site i. For the
Binmix models, I further aggregated the detection his-
tory frequencies to survey- and site-specific counts Cit,
denoting the number of territories detected at site i
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during survey t. Hence, I used exactly the same informa-
tion for both models except for the individual identity
across surveys, which is lost in the second aggregation
and therefore is information that cannot be exploited by
the Binmix model. See Appendix S1: Table S1 for how
one obtains detection history frequencies and replicated
counts from territory-level detection histories.

Binomial and multinomial N-mixture (Binmix and
Multimix) models

For the Binmix model, the input data are aggregated
counts Cit: the number of birds counted at site i during
survey t. We can write the model in a hierarchical fash-
ion as a sequence of two linked probability statements:
Ni ~ Poisson(ki), and Cit|Ni ~ Binomial(Ni,pit) . That is,
the spatial variation of abundance Ni is described by a
Poisson distribution with mean ki and the temporal vari-
ation of the observed counts, Cit, is described by a condi-
tional Binomial distribution with index Ni and detection
probability pit. Implicit are the two assumptions of pop-
ulation closure, i.e., Ni does not vary over surveys, and
absence of false-positives, i.e., there are no double counts
of individuals. Variation in the intensity and detection
probability can be specified by covariates via log and
logit link transformations, respectively, as is customary
in generalized linear models. Instead of a Poisson (P)
mixing distribution, we can specify a zero-inflated Pois-
son (ZIP; Wenger and Freeman 2008) or any other suit-
able discrete-valued distribution such as a negative
binomial (NB; Royle 2004a). We can fit this hierarchical
model directly in Bayesian software such as BUGS
(K�ery 2008). In a classical analysis, the marginal likeli-
hood is maximized, where the latent states, or random
effects, Ni are eliminated by summation and the product
is over M sites, which, for the Poisson mixture, yields

Lðp; k; fCit; i ¼ 1. . .M; t ¼ 1. . .TgÞ

¼
YM
i¼1

( P1
Ni¼maxtCit

�QT
t¼1

BinomialðCit;Ni; pitÞ
�

PoissonðNi; kiÞ

)

where p ¼
p11 . . . p1T
..
. . .

. ..
.

pM1 � � � pMT

0
B@

1
CA and k = (ki, . . ., kM).

In practice, the infinite sum over Ni is restricted to a
finite large bound K (Royle 2004a).
The Multimix model also exploits the information

about individual identity of a territory contained in the
individual capture–recapture data by modeling the vec-
tor of detection history frequencies, yi, as a realization
from a multinomial distribution: yi|Ni ~ Multinomial
(Ni,pi). The cell probabilities pi denote the expected fre-
quencies of each possible detection history and are a
deterministic function of a site- and occasion-specific
detection probability pit (K�ery and Royle 2016: Chapter

7). Only the observation model of the Multimix model
differs from the Binmix model, while the model for the
latent parameters Ni is typically again chosen to be a dis-
crete-valued distribution such as P, ZIP, or NB. Thus,
the marginal likelihood of the model is

Lðp; k; fy1; y2; . . .; yMgÞ

¼
YM
i¼1

( P1
Ni¼maxtCit

�QT
t¼1

Multinomialðyi;Ni; piÞ
�

PoissonðNi; kiÞ

)
:

For a Poisson model, the marginal likelihood has an
analytic representation as the product of Poisson ran-
dom variables (Dorazio et al. 2005) while, for the ZIP
and NB models, the likelihood contains again an infinite
sum and must be maximized numerically.

Assessment of parameter identifiability

I used maximum likelihood in the R package unmarked
(Fiske and Chandler 2011) to fit realistically complex
binomial and multinomial N-mixture models with P, ZIP,
and NB abundance mixtures to the data from 2,037 1-
km2 quadrats for a total of 137 species that were detected
in ≥10 quadrats 2012–2015. I fit models with covariates in
both the abundance and the detection models, such that
log(ki) was specified as a linear function of elevation lin-
ear and squared, and forest cover, and logit(pit) was a lin-
ear function of elevation and of survey date linear and
squared, and duration. Each model was fitted with 10 dif-
ferent values of K (170, 250, 500, 750, 1,000, 1,250, 1,500,
3,000). Median and maximum counts for the detection
histories and the aggregated counts, respectively, were 9
and 165 and 8 and 153. Hence, for most species, even the
smallest Kwas greater than the unmarked default.
As a first criterion for parameter identifiability, I used

stability of numerical solutions when K was increased
(Haines 2016), specifically, of the AIC, which is minus
twice the negative log-likelihood. Second, for P and NB
mixtures, I also computed the two diagnostic statistics in
Dennis et al. (2015). For the P case, estimates of
expected population size become infinite when p = 0,
and as p > 0, repeated counts at a site become indepen-
dent. Diagnostic 1 is based on a sample covariance,
which is a convenient statistic to check for that. For a
finite abundance estimate, it must be positive. The NB
case is approached through moment estimation, where
two diagnostics can be obtained by constraining the
parameter estimates to their correct ranges. The same
diagnostic appears as for the Poisson case, as well as a
further one, and both must be positive for the NB to
yield finite abundance estimates (B. Morgan and E.
Dennis, personal communication).
To check whether patterns of parameter identifiability

were different for more real-world sample sizes, I
repeated all analyses for random subsets of 267 and 50
quadrats, where I again restricted analysis to those 107
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and 66 species, respectively, with ≥10 observed occur-
rences, but only compared five values of K, {120, 500,
1,000, 2,000, 3,000} for the analysis of 267 quadrats and
{105, 500, 1,000, 2,000, 3,000} for that of 50 quadrats.
For most species, the smallest K was again similar to or
greater than the unmarked default.
I focused on realistically complex models with multi-

ple covariates in both submodels. Of course, covariates
were not always significant, but I was not concerned
with this, but simply wanted to work with covariate
models, because in practice these are almost always
adopted. However, covariates have been found to help or
even enable identifiability in similar classes of models
(Dorazio 2014, Matechou et al. 2014). Hence, I repeated
all of the above with models without covariates, where in
addition I also tested a value of K of 10,000. I used the
unmarked function pcount for Binmix and a beta ver-
sion of a revised gmultmix function for fitting Multimix
models (K�ery and Royle 2016).

RESULTS

For the full 2,037 sites and Poisson models (Fig. 1 left
panel), the AIC of covariate models became stable for
most data sets when Kwas around the unmarked default
(Fig. 1 top). Up to K = 3,000, solutions stabilized for
every single one of the 131 data sets in the screening test
for which the covariate models could be fit (Table 1).
Some ZIP models required slightly larger than default
values of K; only for a single data set did solutions remain

unstable up to K = 3,000 (Fig. 1 middle). For the NB-
Binmix models, even greater values of Kwere required for
solutions to stabilize (Fig. 1 bottom) and for 28 data sets,
they never stabilized up to K = 3,000. Hence, P- and ZIP-
Binmix models had essentially no problems (0% and
0.1% of data sets), but NB-Binmix models had apparent
identifiability problems in 21% of cases. The correspond-
ing Multimix models never had identifiability problems
(Fig. 1 right panel). The Dennis et al. (2015) diagnostics
indicated no identifiability problems for any data set for
the P-Binmix models but did so for 66 (50%) of the data
sets for NB-Binmix models (Table 1). While the Dennis
and Series of K criteria agreed broadly in their assessment
of the P-Binmix models, the Dennis criterion for the NB-
Binmix identified more than twice the number of prob-
lems compared with the Series of K criterion.
Akaike’s information criterion often greatly preferred

the NB-Binmix models and these models typically
yielded very much higher abundance estimates than the
ZIP or P mixtures (Fig. 2). Importantly, both identifia-
bility criteria suggested that most of these NB-Binmix
models did not have finite abundance estimates. Most
such unrealistic estimates were thus based on an uniden-
tified model. Estimates of mean detection probability
under the P-Binmix model with K = 3,000 averaged 0.44
per species (range 0.06–0.83). Interestingly, species with
infinite abundance estimates under the NB-Binmix mod-
els had higher abundance and detection probability than
species with finite abundance estimates (Appendix S1:
Fig. S1); thus, it was not the rare and elusive species that

FIG. 1. Plots of the DAIC scores (DAIC) (on the y-axis) vs. the value of the summation limit K in fits of six variants of N-mix-
ture models with covariates to data from 131 data sets/bird species at 2,037 sites (for a description of these six models see Section
“Binomial and multinomial N-mixture [Binmix and Multimix] models”). Here, DAIC is the difference in the Akaike’s information
criterion (AIC) between one value of K in a model fit relative to the AIC of the same model with K = 3,000. Since the number of
parameters does not change, it is equivalent to twice the negative log-likelihood difference. A positive value of DAIC out to
K = 3,000 suggests unstable estimates and therefore lack of parameter identifiability. One line is one species.
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created estimation problems under the NB-Binmix
model. Abundance estimates under the Binmix and Mul-
timix models were in almost perfect agreement on aver-
age for the Poisson and the ZIP mixtures (Fig. 3 top and
middle), but less so for NB mixtures (Fig. 3 bottom).
Results for the models with covariates applied to two

smaller sample sizes (267 and 50 sites) are summarized
in Table 1 and in Appendices S2, S3. They yielded iden-
tical patterns but suggested more identifiability problems
(Table 1) and also somewhat less agreement between the
Binmix and Multimix model-based estimates than
results for 2,037 sites. Importantly, results for the same
analyses for the intercepts-only models, i.e., without
covariates, yielded hardly more cases of parameter
unidentifiability than for the models with covariates
(compare Table 1 and Appendix S1: Fig. S2).

DISCUSSION

Binomial N-mixture (Binmix) models (Royle 2004a)
have become widely used because they allow separate
estimation and modeling of abundance and detection
from replicated counts of unmarked individuals. How-
ever, two issues are, first, that they may yield infinite
abundance estimates, rendering the model unidentifiable
(Dennis et al. 2015, Haines 2016) and second, that Bin-
mix models with negative binomial are often selected
over other mixtures by AIC, but then they produce unre-
alistically high abundance estimates (K�ery et al. 2005,
Joseph et al. 2009, K�ery and Royle 2016). Currently, it is
not known how widespread identifiability problems with
Binmix models are, nor how the “good fit/bad prediction
dilemma” (K�ery and Royle 2016:264) can be explained.

TABLE 1. Screening test for identifiability problems in N-mixture models with covariates fit to data from the new Swiss breeding
bird atlas (Knaus et al. 2018): comparison among two N-mixture models (binomial-Binmix and multinomial-Multimix), three
mixture distributions (Poisson [P], zero-inflated Poisson [ZIP], negative binomial [NB]), three sample sizes (2,037 sites/131
species, 267 sites/107 species, 50 sites/66 species), and two identifiability criteria (series of K criterion and diagnostics of Dennis
et al. 2015).

Model (mixture)

Unstable estimates (%)

2,037 sites 267 sites 50 sites

Series of K Dennis Series of K Dennis Series of K Dennis

P-Binmix 0 0 2 0 5 0
ZIP-Binmix 0.1 – 5 – 9 –
NB-Binmix 21 50 25 52 26 62
P-Multimix 0 – 0 – 0 –
ZIP-Multimix 0 – 1 – 0 –
NB-Multimix 0 – 0 – 0 –

Note: Table entries are the percentage of species with unstable estimates, i.e., with apparent lack of identifiability.

FIG. 2. Plots of abundance estimates vs. Akaike’s information criterion (both on log10 scale, for K = 3,000) for two criteria of
parameter identifiability in binomial N-mixture models: series of K (top) and the two diagnostics of Dennis et al. (2015, bottom).
Both panels show results for all three mixture distributions (Poisson, black; zero-inflated Poisson, blue; and negative binomial, red)
for 131 Swiss breeding bird species; values for same species are linked by lines. Triangles mark models for which the “series of K”
approach and the Dennis et al. diagnostics indicate infinite abundance estimates.
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I conducted a large-scale screening test of the identifi-
ability of Binmix models in practice, using 137 bird data
sets from 2,037 sites (Knaus et al. 2018), for all three
commonly used abundance mixture distributions (Pois-
son, zero-inflated Poisson, and negative-binomial), and
for subsets of the data containing 267 and 50 sites. I
assessed the identifiability of the Binmix model using
two formal criteria (Dennis et al. 2015, Haines 2016)
and also informally by comparing the estimates of the
Binmix model with those of the related multinomial N-
mixture (Multimix) model (Royle 2004b), a hierarchical
variant of a capture–recapture model, and for the latter,
identifiability is not under debate (Barker et al. 2017).
Finally, I compared “realistic models,” with several
covariates in each of the abundance and detection parts
of the model, with the analogous intercepts-only “toy
models” without any covariates; these latter are the ones
dealt with by Dennis et al. (2015) and Barker et al.
(2017), but they are rarely adopted in practice.
My results were clear. Regardless of whether the Bin-

mix models did or did not contain covariates, I found
virtually no identifiability problems with P or ZIP mix-
tures, but for NB mixtures there were problems in about
one-quarter of all tested data sets. With one exception,
no identifiability problems were found in Multimix mod-
els. In addition, estimates from models with P and ZIP
mixtures, and with identifiable NB mixtures, were almost
identical on average between Binmix and Multimix mod-
els. These findings all suggest that the P- and ZIP-

Binmix models were overwhelmingly identifiable in my
screening test. Next, my results also explain the “good
fit/bad prediction dilemma”: typically, unidentifiable
NB-Binmix models had the lowest AIC of all three mix-
tures and yet yielded far higher abundance estimates
than the P or ZIP mixtures. This suggests that unrealisti-
cally high abundance estimates under NB-Binmix mod-
els reported previously (K�ery et al. 2005, Joseph et al.
2009) may simply have been based on unidentifiable
models and should be disregarded; it is only the choice
of a finite K that keeps them from becoming infinity
(Dennis et al. 2015). As expected, more identifiability
problems and less agreement between Binmix and Mul-
timix models were found for smaller sample sizes.
I believe that these are important results, because they

now let us apply binomial N-mixture models with more
confidence than before. However, they also suggest that
identifiability of Binmix models should always be
checked; both the series of K and the Dennis et al. (2015)
diagnostics are useful for this. One of the advantages of
the former is that it can be applied to any mixture, includ-
ing the ZIP, and especially to models with covariates. I
conducted my screening test with maximum likelihood,
but it is worth emphasizing that in a Bayesian analysis,
things normally would not be practically different if the
usual vague priors are adopted (but see Barry et al.
2003). Non-identifiability of parameters is more difficult
to diagnose in a Bayesian analysis (but see Gimenez et al.
2009), so a series of ML fits of a Binmix model may be
insightful about identifiability of a model even when a
Bayesian analysis of a Binmix model is carried out.
What should be done in the future? Perhaps the most

important thing is that users must become aware of these
issues and know how to deal with them in an informed
way when they use Binmix models. Checking identifia-
bility ought to become part of the routine workflow
when fitting Binmix models. Since the “good fit/bad pre-
diction dilemma” now appears to be solved, we need no
longer shy away from using NB-Binmix models. Rather,
we know now when we can and cannot use them and
hence in the former case use their inference with
confidence.
Dennis et al. (2015) criticize the use of a constant

value of K, which may hide identifiability problems by
artificially truncating the solutions for abundance.
Instead, they use an adaptive approach that which will
automatically use larger values of K if needed. Program
MARK uses such an adaptive approach for Binmix
models (G. White, personal communication), and this will
help identification of cases with infinite abundance esti-
mates. Dennis et al. (2015) and Haines (2016) have
developed equivalent likelihoods for the P- and NB-Bin-
mix model that have closed solutions. This is interesting,
because in these cases infinite abundance estimates could
be found directly, without having to rerun the model for
multiple K values or having to rely on a diagnostic. But,
so far, the closed form representations of the likelihood
have not been implemented in the common software.

FIG. 3. Comparison of the abundance intercepts between
multinomial and binomial N-mixture models for all three mix-
ture distributions and 131 test species in 2,037 sites (for
K = 3,000). Black line is regression line of the value on the y-
axis on the value on the x-axis and gray line is the 1:1 line.
Pearson correlation coefficient is given inset. Estimates from
non-identifiable Binmix models are shown in red.
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The Multimix models never had any problem (with a
single exception), regardless of the mixture, which is a defi-
nite advantage of that model and one that we did not real-
ize in an earlier comparison of the two models (K�ery and
Royle 2010). Thus, when data are available such that a
Multimix rather than a Binmix model may be adopted,
we may well want to do this even if only to obtain
increased confidence in the Binmix solutions. On the other
hand, we note that the Binmix is robust against splitting
and lumping errors in territory delimitation that leads to
the detection histories in territory mapping data such as
ours while the Multimix is not (K�ery and Royle 2010).
For statisticians, more research into the issue of param-

eter identifiability of the Binmix model, and indeed of
many classes of hierarchical models, would be valuable
from a practical point of view. If problems with identifia-
bility of a model are found, simply concluding that a cer-
tain type of model should be abandoned hardly appears
like very useful advice. Rather, a more valuable approach
would be to identify ways in which problems may be miti-
gated. For practitioners, the question remains of what to
do when no identifiable model can be found for a given
data set. Clearly, recourse to a simpler model such as a
random-effects Poisson model (Barker et al. 2017) may
or may not be a solution, depending on the objectives of
an analysis: if abundance estimates are needed or if the
same covariates need to be modelled in both the abun-
dance and the detection parts of the model, then such a
model will not be satisfactory. Alternative solutions may
be integrated models, e.g., if territory detection-nondetec-
tion data are available at a subset of sites then their analy-
sis could be integrated in a single, combined Binmix and
Multimix model and the extra information in the Mul-
timix part may mitigate identifiability problems in the
Binmix part of the model. The opportunities for such
combination approaches are vast and may include the
addition to simple replicated counts of distance sampling
as well. Similarly, external (prior) information may be
added in a Bayesian analysis via informative priors or in
a likelihood analysis by penalties (Lele et al. 2012). These
ideas also suggest a large number of possible investiga-
tions about design, which may revolve around how to
optimally combine different types of data, e.g., which
data types and in what proportions. Thus, hierarchical
modeling of abundance from unmarked individuals using
N-mixture models will likely remain a rich ground for
both theoretical and applied investigations. This is
especially so because of the evident utility of binomial
N-mixture models in many fields including ecology, con-
servation, and monitoring.
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